The use of the un-indexed web, commonly known as the deep web and dark web, to commit or facilitate criminal activity has drastically increased over the past decade. The dark web is an in-famously dangerous place where all kinds of criminal activities take place [1-2], despite advances in web forensics techniques, tools, and methodologies, few studies have formally tackled the dark and deep web forensics and the technical differences in terms of investigative techniques and artefacts identification and extraction. This research proposes a novel and comprehensive protocol to guide and assist digital forensics professionals in investigating crimes committed on or via the deep and dark web, The protocol named D2WFP establishes a new sequential approach for performing investigative activities by observing the order of volatility and implementing a systemic approach covering all browsing related hives and artefacts which ultimately resulted into improv-ing the accuracy and effectiveness. Rigorous quantitative and qualitative research has been conducted by assessing D2WFP following a scientifically-sound and comprehensive process in different scenarios and the obtained results show an apparent increase in the number of artefacts re-covered when adopting D2WFP which outperform any current industry or opensource browsing forensics tools. The second contribution of D2WFP is the robust formulation of artefact correlation and cross-validation within D2WFP which enables digital forensics professionals to better document and structure their analysis of host-based deep and dark web browsing artefacts.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员