Recently, deep learning-based salient object detection (SOD) in optical remote sensing images (ORSIs) have achieved significant breakthroughs. We observe that existing ORSIs-SOD methods consistently center around optimizing pixel features in the spatial domain, progressively distinguishing between backgrounds and objects. However, pixel information represents local attributes, which are often correlated with their surrounding context. Even with strategies expanding the local region, spatial features remain biased towards local characteristics, lacking the ability of global perception. To address this problem, we introduce the Fourier transform that generate global frequency features and achieve an image-size receptive field. To be specific, we propose a novel United Domain Cognition Network (UDCNet) to jointly explore the global-local information in the frequency and spatial domains. Technically, we first design a frequency-spatial domain transformer block that mutually amalgamates the complementary local spatial and global frequency features to strength the capability of initial input features. Furthermore, a dense semantic excavation module is constructed to capture higher-level semantic for guiding the positioning of remote sensing objects. Finally, we devise a dual-branch joint optimization decoder that applies the saliency and edge branches to generate high-quality representations for predicting salient objects. Experimental results demonstrate the superiority of the proposed UDCNet method over 24 state-of-the-art models, through extensive quantitative and qualitative comparisons in three widely-used ORSIs-SOD datasets. The source code is available at: \href{https://github.com/CSYSI/UDCNet}{\color{blue} https://github.com/CSYSI/UDCNet}.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员