Accurately extracting clinical information from speech is critical to the diagnosis and treatment of many neurological conditions. As such, there is interest in leveraging AI for automatic, objective assessments of clinical speech to facilitate diagnosis and treatment of speech disorders. We explore transfer learning using foundation models, focusing on the impact of layer selection for the downstream task of predicting pathological speech features. We find that selecting an optimal layer can greatly improve performance (~15.8% increase in balanced accuracy per feature as compared to worst layer, ~13.6% increase as compared to final layer), though the best layer varies by predicted feature and does not always generalize well to unseen data. A learned weighted sum offers comparable performance to the average best layer in-distribution (only ~1.2% lower) and had strong generalization for out-of-distribution data (only 1.5% lower than the average best layer).


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员