Code models, such as CodeBERT and CodeT5, offer general-purpose representations of code and play a vital role in supporting downstream automated software engineering tasks. Most recently, code models were revealed to be vulnerable to backdoor attacks. A code model that is backdoor-attacked can behave normally on clean examples but will produce pre-defined malicious outputs on examples injected with triggers that activate the backdoors. Existing backdoor attacks on code models use unstealthy and easy-to-detect triggers. This paper aims to investigate the vulnerability of code models with stealthy backdoor attacks. To this end, we propose AFRAIDOOR (Adversarial Feature as Adaptive Backdoor). AFRAIDOOR achieves stealthiness by leveraging adversarial perturbations to inject adaptive triggers into different inputs. We evaluate AFRAIDOOR on three widely adopted code models (CodeBERT, PLBART and CodeT5) and two downstream tasks (code summarization and method name prediction). We find that around 85% of adaptive triggers in AFRAIDOOR bypass the detection in the defense process. By contrast, only less than 12% of the triggers from previous work bypass the defense. When the defense method is not applied, both AFRAIDOOR and baselines have almost perfect attack success rates. However, once a defense is applied, the success rates of baselines decrease dramatically to 10.47% and 12.06%, while the success rate of AFRAIDOOR are 77.05% and 92.98% on the two tasks. Our finding exposes security weaknesses in code models under stealthy backdoor attacks and shows that the state-of-the-art defense method cannot provide sufficient protection. We call for more research efforts in understanding security threats to code models and developing more effective countermeasures.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月15日
Arxiv
0+阅读 · 2023年10月13日
Arxiv
0+阅读 · 2023年10月13日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年10月15日
Arxiv
0+阅读 · 2023年10月13日
Arxiv
0+阅读 · 2023年10月13日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
12+阅读 · 2020年12月10日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员