Parallel Proof-of-Work (PoW) protocols have been suggested in the literature to improve the safety guarantees, transaction throughput and confirmation latencies of Nakamoto consensus. In this work, we first consider the existing parallel PoW protocols and develop hard-coded incentive attack structures. Our theoretical results and simulations show that the existing parallel PoW protocols are more vulnerable to incentive attacks than the Nakamoto consensus, e.g., attacks have smaller profitability threshold and they result in higher relative rewards. Next, we introduce a voting-based semi-parallel PoW protocol that outperforms both Nakamoto consensus and the existing parallel PoW protocols from most practical perspectives such as communication overheads, throughput, transaction conflicts, incentive compatibility of the protocol as well as a fair distribution of transaction fees among the voters and the leaders. We use state-of-the-art analysis to evaluate the consistency of the protocol and consider Markov decision process (MDP) models to substantiate our claims about the resilience of our protocol against incentive attacks.


翻译:并行工作量证明(PoW)协议在已有文献中被提出,旨在提升中本共识的安全性保障、交易吞吐量及确认延迟。本文首先考察现有并行PoW协议,并构建了硬编码的激励攻击结构。理论结果与仿真实验表明,现有并行PoW协议相比中本共识更易受激励攻击,例如攻击的盈利阈值更低且能获得更高的相对收益。随后,我们提出一种基于投票的半并行PoW协议,该协议在通信开销、吞吐量、交易冲突、协议激励相容性以及投票者与领导者间交易费用的公平分配等多数实践维度上,均优于中本共识与现有并行PoW协议。我们采用前沿分析方法评估协议的一致性,并利用马尔可夫决策过程(MDP)模型验证本协议抵御激励攻击的稳健性主张。

0
下载
关闭预览

相关内容

[IEEE TPAMI 2024] 将CLIP模型转换为端到端文本识别器
专知会员服务
22+阅读 · 2024年4月12日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
CVPR 2019:精确目标检测的不确定边界框回归
AI科技评论
13+阅读 · 2019年9月16日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
CVPR 2019:精确目标检测的不确定边界框回归
AI科技评论
13+阅读 · 2019年9月16日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员