The history of user behaviors constitutes one of the most significant characteristics in predicting the click-through rate (CTR), owing to their strong semantic and temporal correlation with the target item. While the literature has individually examined each of these correlations, research has yet to analyze them in combination, that is, the quadruple correlation of (behavior semantics, target semantics, behavior temporal, and target temporal). The effect of this correlation on performance and the extent to which existing methods learn it remain unknown. To address this gap, we empirically measure the quadruple correlation and observe intuitive yet robust quadruple patterns. We measure the learned correlation of several representative user behavior methods, but to our surprise, none of them learn such a pattern, especially the temporal one. In this paper, we propose the Temporal Interest Network (TIN) to capture the quadruple semantic and temporal correlation between behaviors and the target. We achieve this by incorporating target-aware temporal encoding, in addition to semantic embedding, to represent behaviors and the target. Furthermore, we deploy target-aware attention, along with target-aware representation, to explicitly conduct the 4-way interaction. We performed comprehensive evaluations on the Amazon and Alibaba datasets. Our proposed TIN outperforms the best-performing baselines by 0.43\% and 0.29\% on two datasets, respectively. Comprehensive analysis and visualization show that TIN is indeed capable of learning the quadruple correlation effectively, while all existing methods fail to do so. We provide our implementation of TIN in Tensorflow.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员