We propose overcoming the memory capacity limitation of GPUs with high-capacity Storage-Class Memory (SCM) and DRAM cache. By significantly increasing the memory capacity with SCM, the GPU can capture a larger fraction of the memory footprint than HBM for workloads that oversubscribe memory, achieving high speedups. However, the DRAM cache needs to be carefully designed to address the latency and BW limitations of the SCM while minimizing cost overhead and considering GPU's characteristics. Because the massive number of GPU threads can thrash the DRAM cache, we first propose an SCM-aware DRAM cache bypass policy for GPUs that considers the multi-dimensional characteristics of memory accesses by GPUs with SCM to bypass DRAM for data with low performance utility. In addition, to reduce DRAM cache probes and increase effective DRAM BW with minimal cost, we propose a Configurable Tag Cache (CTC) that repurposes part of the L2 cache to cache DRAM cacheline tags. The L2 capacity used for the CTC can be adjusted by users for adaptability. Furthermore, to minimize DRAM cache probe traffic from CTC misses, our Aggregated Metadata-In-Last-column (AMIL) DRAM cache organization co-locates all DRAM cacheline tags in a single column within a row. The AMIL also retains the full ECC protection, unlike prior DRAM cache's Tag-And-Data (TAD) organization. Additionally, we propose SCM throttling to curtail power and exploiting SCM's SLC/MLC modes to adapt to workload's memory footprint. While our techniques can be used for different DRAM and SCM devices, we focus on a Heterogeneous Memory Stack (HMS) organization that stacks SCM dies on top of DRAM dies for high performance. Compared to HBM, HMS improves performance by up to 12.5x (2.9x overall) and reduces energy by up to 89.3% (48.1% overall). Compared to prior works, we reduce DRAM cache probe and SCM write traffic by 91-93% and 57-75%, respectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员