We derive a novel PAC-Bayesian generalization bound for reinforcement learning that explicitly accounts for Markov dependencies in the data, through the chain's mixing time. This contributes to overcoming challenges in obtaining generalization guarantees for reinforcement learning, where the sequential nature of data breaks the independence assumptions underlying classical bounds. Our bound provides non-vacuous certificates for modern off-policy algorithms like Soft Actor-Critic. We demonstrate the bound's practical utility through PB-SAC, a novel algorithm that optimizes the bound during training to guide exploration. Experiments across continuous control tasks show that our approach provides meaningful confidence certificates while maintaining competitive performance.


翻译:我们推导了一个新颖的PAC-Bayesian强化学习泛化界,该界通过马尔可夫链的混合时间显式地考虑了数据中的马尔可夫依赖性。这有助于克服为强化学习获取泛化保证的挑战,在强化学习中,数据的序列性质打破了经典泛化界所依赖的独立性假设。我们的泛化界为Soft Actor-Critic等现代离策略算法提供了非平凡的保证。我们通过PB-SAC算法证明了该界的实际效用,PB-SAC是一种在训练期间通过优化该界来指导探索的新算法。在连续控制任务上的实验表明,我们的方法在保持竞争性性能的同时,提供了有意义的置信度保证。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年12月9日
Arxiv
10+阅读 · 2020年6月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员