We point out that (continuous or discontinuous) piecewise linear functions on a convex polytope mesh can be represented by two-hidden-layer ReLU neural networks in a weak sense. In addition, the numbers of neurons of the two hidden layers required to weakly represent are accurately given based on the numbers of polytopes and hyperplanes involved in this mesh. The results naturally hold for constant and linear finite element functions. Such weak representation establishes a bridge between two-hidden-layer ReLU neural networks and finite element functions, and leads to a perspective for analyzing approximation capability of ReLU neural networks in $L^p$ norm via finite element functions. Moreover, we discuss the strict representation for tensor finite element functions via the recent tensor neural networks.


翻译:我们指出,在凸多面体网格上的(连续或非连续)分段线性函数可以在弱意义下由双层ReLU神经网络表示。此外,实现弱表示所需两个隐藏层的神经元数量,可根据该网格所涉及的多面体与超平面数量精确给出。该结果自然适用于常数及线性有限元函数。此类弱表示为双层ReLU神经网络与有限元函数之间建立了桥梁,并为通过有限元函数分析ReLU神经网络在$L^p$范数下的逼近能力提供了视角。此外,我们借助近期提出的张量神经网络,探讨了张量有限元函数的严格表示问题。

0
下载
关闭预览

相关内容

【Nature machine intelligence】闭型连续时间神经网络
专知会员服务
30+阅读 · 2022年11月17日
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
专知会员服务
30+阅读 · 2021年2月26日
【NeurIPS 2020】核基渐进蒸馏加法器神经网络
专知
13+阅读 · 2020年10月19日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
【NeurIPS 2020】核基渐进蒸馏加法器神经网络
专知
13+阅读 · 2020年10月19日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员