Neural networks have shown state-of-the-art performances in various classification and regression tasks. Rectified linear units (ReLU) are often used as activation functions for the hidden layers in a neural network model. In this article, we establish the connection between the Poisson hyperplane processes (PHP) and two-layer ReLU neural networks. We show that the PHP with a Gaussian prior is an alternative probabilistic representation to a two-layer ReLU neural network. In addition, we show that a two-layer neural network constructed by PHP is scalable to large-scale problems via the decomposition propositions. Finally, we propose an annealed sequential Monte Carlo algorithm for Bayesian inference. Our numerical experiments demonstrate that our proposed method outperforms the classic two-layer ReLU neural network. The implementation of our proposed model is available at https://github.com/ShufeiGe/Pois_Relu.git.


翻译:神经网络在各类分类与回归任务中展现出最先进的性能。修正线性单元(ReLU)常被用作神经网络模型隐藏层的激活函数。本文建立了泊松超平面过程(PHP)与两层ReLU神经网络之间的联系。我们证明,具有高斯先验的PHP是两层ReLU神经网络的另一种概率表示。此外,通过分解命题,我们证明了由PHP构建的两层神经网络可扩展至大规模问题。最后,我们提出了一种用于贝叶斯推断的退火序贯蒙特卡罗算法。数值实验表明,我们提出的方法优于经典的两层ReLU神经网络。所提模型的实现代码可在 https://github.com/ShufeiGe/Pois_Relu.git 获取。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
专知会员服务
12+阅读 · 2021年6月20日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
33+阅读 · 2021年2月27日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员