Let $\pi$ be a property of pairs $(G,Z)$, where $G$ is a graph and $Z\subseteq V(G)$. In the \emph{minimum $\pi$-hitting set problem}, given an input graph $G$, we want to find a smallest set $X\subseteq V(G)$ such that $X$ intersects every set $Z\subseteq V(G)$ such that $(G,Z)$ has the property $\pi$. An important special case is that $\pi$ is satisfied by $(G,Z)$ exactly if $G[Z]$ is isomorphic to one of graphs in a finite set $\mathcal{F}$; in this \emph{minimum $\mathcal{F}$-hitting set} problem, $X$ needs to hit all appearances of the graphs from $\mathcal{F}$ as induced subgraphs of $G$. In this note, we show that the local search argument of Har-Peled and Quanrud gives a PTAS for the minimum $\mathcal{F}$-hitting set problem for graphs from any class with polynomial expansion. Moreover, we argue that the local search argument applies more generally to all properties $\pi$ such that one can test whether $X$ is a $\pi$-hitting set in polynomial time and $G[Z]$ has bounded diameter whenever $(G,Z)$ satisfies $\pi$; this is a common generalization of the minimum $\mathcal{F}$-hitting set problem and minimum $r$-dominating set problem. Finaly, we note that the analogous claim also holds for the dual problem of finding the maximum number of disjoint sets $Z$ such that $(G,Z)$ has the property $\pi$; this generalizes maximum $F$-matching, maximum induced $F$-matching, and maximum $r$-independent set problems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月8日
Arxiv
0+阅读 · 2023年6月8日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员