Neural Forecasters (NFs) have become a cornerstone of Long-term Time Series Forecasting (LTSF). However, recent progress has been hampered by an overemphasis on architectural complexity at the expense of fundamental forecasting principles. In this work, we revisit the principles of LTSF. We begin by formulating a Variance Reduction Hypothesis (VRH), positing that generating and combining multiple forecasts is essential to reducing the inherent uncertainty of NFs. Guided by this, we propose Boosted Direct Output (BDO), a streamlined paradigm that synergistically hybridizes the causal structure of Auto-Regressive (AR) with the stability of Direct Output (DO), while implicitly realizing the principle of forecast combination within a single network. Furthermore, we address the critical validation-test generalization gap by employing parameter smoothing to stabilize optimization. Extensive experiments demonstrate that these trivial yet principled improvements enable a direct temporal MLP to outperform recent, complex state-of-the-art models in nearly all benchmarks, without relying on intricate inductive biases. Finally, we empirically verify our hypothesis, establishing a dynamic performance bound that highlights promising directions for future research. The code for review is available at: https://anonymous.4open.science/r/ReNF-A151.


翻译:神经预测器已成为长期时间序列预测的基石。然而,近期进展因过度强调架构复杂性而忽视了基本预测原则,导致发展受阻。本研究重新审视了长期时间序列预测的核心原则。我们首先提出方差缩减假说,主张生成并组合多个预测对于降低神经预测器固有不确定性至关重要。在此指导下,我们提出增强直接输出范式——一种简化的框架,将自回归的因果结构与直接输出的稳定性协同融合,同时在单一网络内隐式实现预测组合原则。此外,我们通过参数平滑技术稳定优化过程,以解决关键的验证-测试泛化鸿沟问题。大量实验表明,这些简洁而原则性的改进使直接时序多层感知机在几乎所有基准测试中超越了近期复杂的先进模型,且无需依赖复杂的归纳偏置。最后,我们通过实证验证了所提假说,建立了动态性能边界,为未来研究指明了有前景的方向。审阅代码已发布于:https://anonymous.4open.science/r/ReNF-A151。

0
下载
关闭预览

相关内容

数学上,序列是被排成一列的对象(或事件);这样每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。
144页ppt《扩散模型》,Google DeepMind Sander Dieleman
专知会员服务
48+阅读 · 2025年11月21日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关资讯
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员