This paper introduces the Shepherd Test, a new conceptual test for assessing the moral and relational dimensions of superintelligent artificial agents. The test is inspired by human interactions with animals, where ethical considerations about care, manipulation, and consumption arise in contexts of asymmetric power and self-preservation. We argue that AI crosses an important, and potentially dangerous, threshold of intelligence when it exhibits the ability to manipulate, nurture, and instrumentally use less intelligent agents, while also managing its own survival and expansion goals. This includes the ability to weigh moral trade-offs between self-interest and the well-being of subordinate agents. The Shepherd Test thus challenges traditional AI evaluation paradigms by emphasizing moral agency, hierarchical behavior, and complex decision-making under existential stakes. We argue that this shift is critical for advancing AI governance, particularly as AI systems become increasingly integrated into multi-agent environments. We conclude by identifying key research directions, including the development of simulation environments for testing moral behavior in AI, and the formalization of ethical manipulation within multi-agent systems.


翻译:本文提出牧羊人测试,一种用于评估超级智能人工智能体道德与关系维度的新型概念性测试。该测试灵感来源于人类与动物的互动,其中涉及关怀、操纵和消费的伦理考量在权力非对称与自我保存的语境中显现。我们认为,当AI展现出操纵、培育并工具化利用低智能智能体的能力,同时管理其自身生存与扩张目标时,便跨越了一个重要且潜在危险的智能阈值。这包括权衡自身利益与从属智能体福祉之间道德取舍的能力。因此,牧羊人测试通过强调道德能动性、层级化行为以及存在性风险下的复杂决策,对传统AI评估范式提出了挑战。我们认为这一转变对推进AI治理至关重要,尤其是在AI系统日益融入多智能体环境的背景下。最后,我们明确了关键研究方向,包括开发用于测试AI道德行为的仿真环境,以及形式化多智能体系统中的伦理操纵框架。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员