Safe large-scale coordination of multiple cooperative connected autonomous vehicles (CAVs) hinges on communication that is both efficient and interpretable. Existing approaches either rely on transmitting high-bandwidth raw sensor data streams or neglect perception and planning uncertainties inherent in shared data, resulting in systems that are neither scalable nor safe. To address these limitations, we propose Uncertainty-Guided Natural Language Cooperative Autonomous Planning (UNCAP), a vision-language model-based planning approach that enables CAVs to communicate via lightweight natural language messages while explicitly accounting for perception uncertainty in decision-making. UNCAP features a two-stage communication protocol: (i) an ego CAV first identifies the subset of vehicles most relevant for information exchange, and (ii) the selected CAVs then transmit messages that quantitatively express their perception uncertainty. By selectively fusing messages that maximize mutual information, this strategy allows the ego vehicle to integrate only the most relevant signals into its decision-making, improving both the scalability and reliability of cooperative planning. Experiments across diverse driving scenarios show a 63% reduction in communication bandwidth with a 31% increase in driving safety score, a 61% reduction in decision uncertainty, and a four-fold increase in collision distance margin during near-miss events. Project website: https://uncap-project.github.io/


翻译:多辆协作式联网自动驾驶车辆(CAV)的安全大规模协调依赖于高效且可解释的通信。现有方法要么依赖传输高带宽的原始传感器数据流,要么忽视了共享数据中固有的感知与规划不确定性,导致系统既缺乏可扩展性也不安全。为应对这些局限,我们提出不确定性引导的自然语言协作自动驾驶规划(UNCAP),一种基于视觉-语言模型的规划方法,使CAV能够通过轻量级自然语言消息进行通信,同时在决策中显式地考虑感知不确定性。UNCAP采用两阶段通信协议:(i)自车CAV首先识别出最需要进行信息交换的车辆子集;(ii)被选中的CAV随后传输定量表达其感知不确定性的消息。通过选择性融合能最大化互信息的消息,该策略使自车仅将最相关的信号整合到其决策中,从而提升了协作规划的可扩展性与可靠性。在多种驾驶场景下的实验表明,该方法实现了通信带宽降低63%,驾驶安全评分提升31%,决策不确定性降低61%,并在险情避让事件中将碰撞距离裕度提高了四倍。项目网站:https://uncap-project.github.io/

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员