Autonomous high-fidelity object reconstruction is fundamental for creating digital assets and bridging the simulation-to-reality gap in robotics. We present ObjSplat, an active reconstruction framework that leverages Gaussian surfels as a unified representation to progressively reconstruct unknown objects with both photorealistic appearance and accurate geometry. Addressing the limitations of conventional opacity or depth-based cues, we introduce a geometry-aware viewpoint evaluation pipeline that explicitly models back-face visibility and occlusion-aware multi-view covisibility, reliably identifying under-reconstructed regions even on geometrically complex objects. Furthermore, to overcome the limitations of greedy planning strategies, ObjSplat employs a next-best-path (NBP) planner that performs multi-step lookahead on a dynamically constructed spatial graph. By jointly optimizing information gain and movement cost, this planner generates globally efficient trajectories. Extensive experiments in simulation and on real-world cultural artifacts demonstrate that ObjSplat produces physically consistent models within minutes, achieving superior reconstruction fidelity and surface completeness while significantly reducing scan time and path length compared to state-of-the-art approaches. Project page: https://li-yuetao.github.io/ObjSplat-page/ .


翻译:自主高保真物体重建是创建数字资产与弥合机器人学中仿真-现实差距的基础。我们提出了ObjSplat,一种主动重建框架,它利用高斯面元作为统一表示,逐步重建具有照片级真实感外观与精确几何形状的未知物体。针对传统基于不透明度或深度线索的局限性,我们引入了一种几何感知的视点评估流程,该流程显式建模背面可见性与遮挡感知的多视角共可见性,即使在几何结构复杂的物体上也能可靠地识别重建不足的区域。此外,为克服贪婪规划策略的局限,ObjSplat采用了一种基于动态构建空间图进行多步前瞻的"最优下一条路径"规划器。通过联合优化信息增益与移动成本,该规划器能生成全局高效的轨迹。在仿真环境及真实世界文化遗产上的大量实验表明,ObjSplat可在数分钟内生成物理一致的模型,在显著减少扫描时间与路径长度的同时,实现了优于现有先进方法的重建保真度与表面完整性。项目页面:https://li-yuetao.github.io/ObjSplat-page/。

0
下载
关闭预览

相关内容

图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员