We propose a method for sound source localization (SSL) for a source inside a structure using Ac-CycleGAN under unpaired data conditions. The proposed method utilizes a large amount of simulated data and a small amount of actual experimental data to locate a sound source inside a structure in a real environment. An Ac-CycleGAN generator contributes to the transformation of simulated data into real data, or vice versa, using unpaired data from both domains. The discriminator of an Ac-CycleGAN model is designed to differentiate between the transformed data generated by the generator and real data, while also predicting the location of the sound source. Vectors representing the frequency spectrum of the accelerometers (FSAs) measured at three points outside the structure are used as input data and the source areas inside the structure are used as labels. The input data vectors are concatenated vertically to form an image. Labels are defined by dividing the interior of the structure into eight areas with one-hot encoding for each area. Thus, the SSL problem is redefined as an image-classification problem to stochastically estimate the location of the sound source. We show that it is possible to estimate the sound source location using the Ac-CycleGAN discriminator for unpaired data across domains. Furthermore, we analyze the discriminative factors for distinguishing the data. The proposed model exhibited an accuracy exceeding 90\% when trained on 80\% of actual data (12.5\% of simulated data). Despite potential imperfections in the domain transformation process carried out by the Ac-CycleGAN generator, the discriminator can effectively distinguish between transferred and real data by selectively utilizing only those features that generate a relatively small transformation error.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员