In this paper, we investigate the problem of multi-user linearly decomposable function computation, where $N$ servers help compute functions for $K$ users, and where each such function can be expressed as a linear combination of $L$ basis subfunctions. The process begins with each server computing some of the subfunctions, then broadcasting a linear combination of its computed outputs to a selected group of users, and finally having each user linearly combine its received data to recover its function. As it has become recently known, this problem can be translated into a matrix decomposition problem $\mathbf{F}=\mathbf{D}\mathbf{E}$, where $\mathbf{F} \in \mathbf{GF}(q)^{K \times L}$ describes the coefficients that define the users' demands, where $\mathbf{E} \in \mathbf{GF}(q)^{N \times L}$ describes which subfunction each server computes and how it combines the computed outputs, and where $\mathbf{D} \in \mathbf{GF}(q)^{K \times N}$ describes which servers each user receives data from and how it combines this data. Our interest here is in reducing the total number of subfunction computations across the servers (cumulative computational cost), as well as the worst-case load which can be a measure of computational delay. Our contribution consists of novel bounds on the two computing costs, where these bounds are linked here to the covering and packing radius of classical codes. One of our findings is that in certain cases, our distributed computing problem -- and by extension our matrix decomposition problem -- is treated optimally when $\mathbf{F}$ is decomposed into a parity check matrix $\mathbf{D}$ of a perfect code, and a matrix $\mathbf{E}$ which has as columns the coset leaders of this same code.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月15日
Arxiv
0+阅读 · 2024年3月15日
Arxiv
21+阅读 · 2020年10月11日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年3月15日
Arxiv
0+阅读 · 2024年3月15日
Arxiv
21+阅读 · 2020年10月11日
Arxiv
92+阅读 · 2020年2月28日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员