Any measurement in condition monitoring applications is associated with disturbing noise. Till now, most of the diagnostic procedures have assumed the Gaussian distribution for the noise. This paper shares a novel perspective to the problem of local damage detection. The acquired vector of observations is considered as an additive mixture of signal of interest (SOI) and noise with strongly non-Gaussian, heavy-tailed properties, that masks the SOI. The distribution properties of the background noise influence the selection of tools used for the signal analysis, particularly for local damage detection. Thus, it is extremely important to recognize and identify possible non-Gaussian behavior of the noise. The problem considered here is more general than the classical goodness-of-fit testing. The paper highlights the important role of variance, as most of the methods for signal analysis are based on the assumption of the finite-variance distribution of the underlying signal. The finite variance assumption is crucial but implicit to most indicators used in condition monitoring, (such as the root-mean-square value, the power spectral density, the kurtosis, the spectral correlation, etc.), in view that infinite variance implies moments higher than 2 are also infinite. The problem is demonstrated based on three popular types of non-Gaussian distributions observed for real vibration signals. We demonstrate how the properties of noise distribution in the time domain may change by its transformations to the time-frequency domain (spectrogram). Additionally, we propose a procedure to check the presence of the infinite-variance of the background noise. Our investigations are illustrated using simulation studies and real vibration signals from various machines.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员