AI infrastructures, predominantly GPUs, have delivered remarkable performance gains for deep learning. Conversely, scientific computing, exemplified by quantum chemistry systems, suffers from dynamic diversity, where computational patterns are more diverse and vary dynamically, posing a significant challenge to sponge acceleration off GPUs. In this paper, we propose Matryoshka, a novel elastically-parallel technique for the efficient execution of quantum chemistry system with dynamic diversity on GPU. Matryoshka capitalizes on Elastic Parallelism Transformation, a property prevalent in scientific systems yet underexplored for dynamic diversity, to elastically realign parallel patterns with GPU architecture. Structured around three transformation primitives (Permutation, Deconstruction, and Combination), Matryoshka encompasses three core components. The Block Constructor serves as the central orchestrator, which reformulates data structures accommodating dynamic inputs and constructs fine-grained GPU-efficient compute blocks. Within each compute block, the Graph Compiler operates offline, generating high-performance code with clear computational path through an automated compilation process. The Workload Allocator dynamically schedules workloads with varying operational intensities to threads online. It achieves highly efficient parallelism for compute-intensive operations and facilitates fusion with neighboring memory-intensive operations automatically. Extensive evaluation shows that Matryoshka effectively addresses dynamic diversity, yielding acceleration improvements of up to 13.86x (average 9.41x) over prevailing state-of-the-art approaches on 13 quantum chemistry systems.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员