A state-space model is a time-series model that has an unobserved latent process from which we take noisy measurements over time. The observations are conditionally independent given the latent process and the latent process itself is Markovian. These properties lead to simplifications for the conditional distribution of the latent process given the parameters and the observations. This chapter looks at how we can leverage the properties of state-space models to construct efficient MCMC samplers. We consider a range of Gibbs-sampler schemes, including those which use the forward-backward algorithm to simulate from the full conditional of the latent process given the parameters. For models where the forward-backward algorithm is not applicable we look at particle MCMC algorithms that, given the parameters, use particle filters to approximately simulate from the latent process or estimate the likelihood of the observations. Throughout, we provide intuition and informally discuss theory about the properties of the model that impact the efficiency of the different algorithms and how approaches such as reparameterization can improve mixing.


翻译:状态空间模型是一种时间序列模型,其包含一个不可观测的潜在过程,我们随时间对该过程进行带噪声的测量。在给定潜在过程的条件下,观测值条件独立,且潜在过程本身具有马尔可夫性。这些特性使得在给定参数和观测值的条件下,潜在过程的条件分布得以简化。本章探讨如何利用状态空间模型的特性来构建高效的MCMC采样器。我们考虑了一系列吉布斯采样方案,包括使用前向-后向算法从给定参数条件下潜在过程的完全条件分布中进行采样的方案。对于前向-后向算法不适用的模型,我们研究了粒子MCMC算法,这些算法在给定参数条件下,使用粒子滤波器近似地从潜在过程采样或估计观测值的似然。自始至终,我们提供直观解释并非正式地讨论了影响不同算法效率的模型特性相关理论,以及诸如重参数化等方法如何改善混合性能。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
23+阅读 · 2022年2月24日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
23+阅读 · 2022年2月24日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员