Selecting an effective step-size is a fundamental challenge in first-order optimization, especially for problems with non-Euclidean geometries. This paper presents a novel adaptive step-size strategy for optimization algorithms that rely on linear minimization oracles, as used in the Conditional Gradient or non-Euclidean Normalized Steepest Descent algorithms. Using a simple heuristic to estimate a local Lipschitz constant for the gradient, we can determine step-sizes that guarantee sufficient decrease at each iteration. More precisely, we establish convergence guarantees for our proposed Adaptive Conditional Gradient Descent algorithm, which covers as special cases both the classical Conditional Gradient algorithm and non-Euclidean Normalized Steepest Descent algorithms with adaptive step-sizes. Our analysis covers optimization of continuously differentiable functions in non-convex, quasar-convex, and strongly convex settings, achieving convergence rates that match state-of-the-art theoretical bounds. Comprehensive numerical experiments validate our theoretical findings and illustrate the practical effectiveness of Adaptive Conditional Gradient Descent. The results exhibit competitive performance, underscoring the potential of the adaptive step-size for applications.


翻译:在一阶优化中,选择有效的步长是一个基本挑战,尤其对于具有非欧几里得几何的问题。本文提出了一种新颖的自适应步长策略,适用于依赖线性最小化预言机的优化算法,例如条件梯度算法或非欧几里得归一化最速下降算法中所使用的预言机。通过使用一个简单的启发式方法来估计梯度的局部Lipschitz常数,我们可以确定保证每次迭代有足够下降的步长。更精确地说,我们为我们提出的自适应条件梯度下降算法建立了收敛性保证,该算法作为特例涵盖了经典条件梯度算法以及具有自适应步长的非欧几里得归一化最速下降算法。我们的分析涵盖了在非凸、拟星凸和强凸设置下连续可微函数的优化,所达到的收敛速率与最先进的理论界限相匹配。全面的数值实验验证了我们的理论发现,并说明了自适应条件梯度下降法的实际有效性。结果展现了具有竞争力的性能,突显了自适应步长在应用中的潜力。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
18+阅读 · 2022年11月21日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员