Mathematical research data plays a crucial role across scientific disciplines, yet its documentation and dissemination remain challenging due to the lack of standardized research data management practices. The MaRDMO Plugin addresses these challenges by integrating mathematical models, algorithms, and interdisciplinary workflows into the established framework of the Research Data Management Organiser (RDMO). Built on FAIR principles, MaRDMO enables structured documentation and retrieval of mathematical research data through guided questionnaires. It connects to multiple knowledge graphs, including MathModDB, MathAlgoDB, and the MaRDI Portal. Users can document and search for models, algorithms, and workflows via dynamic selection interfaces that also leverage other sources such as Wikidata. The plugin facilitates the export to the individual MaRDI services, ensuring data quality through automated validation. By embedding mathematical research data management into the widely adopted RDMO platform, MaRDMO represents a significant step toward making mathematical research data more findable, accessible, and reusable.


翻译:数学研究数据在科学各学科中发挥着关键作用,但由于缺乏标准化的研究数据管理实践,其文档记录与传播仍面临挑战。MaRDMO插件通过将数学模型、算法及跨学科工作流整合到成熟的研究数据管理组织器(RDMO)框架中,应对了这些挑战。该插件基于FAIR原则,通过引导式问卷实现数学研究数据的结构化记录与检索。它连接了多个知识图谱,包括MathModDB、MathAlgoDB以及MaRDI门户。用户可通过动态选择界面(该界面同时整合了维基数据等其他来源)对模型、算法和工作流进行记录与检索。该插件支持向各MaRDI服务导出数据,并通过自动化验证确保数据质量。通过将数学研究数据管理嵌入广泛采用的RDMO平台,MaRDMO标志着在使数学研究数据更可发现、可访问、可重用方面迈出了重要一步。

0
下载
关闭预览

相关内容

数学是关于数量、结构、变化等主题的探索。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年10月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员