We investigate the application of randomized quasi-Monte Carlo (RQMC) methods in random feature approximations for kernel-based learning. Compared to the classical Monte Carlo (MC) approach \citep{rahimi2007random}, RQMC improves the deterministic approximation error bound from $O_P(1/\sqrt{n})$ to $O(1/M)$ (up to logarithmic factors), matching the rate achieved by quasi-Monte Carlo (QMC) methods \citep{huangquasi}. Beyond the deterministic error bound guarantee, we further establish additional average error bounds for RQMC features: some requiring weaker assumptions and others significantly reducing the exponent of the logarithmic factor. In the context of kernel ridge regression, we show that RQMC features offer computational advantages over MC features while preserving the same statistical error rate. Empirical results further show that RQMC methods maintain stable performance in both low and moderately high-dimensional settings, unlike QMC methods, which suffer from significant performance degradation as dimension increases.


翻译:本文研究了随机拟蒙特卡洛方法在基于核学习的随机特征近似中的应用。与经典蒙特卡洛方法相比,RQMC 将确定性近似误差界从 $O_P(1/\sqrt{n})$ 改进至 $O(1/M)$(忽略对数因子),达到了拟蒙特卡洛方法所实现的收敛速率。除确定性误差界保证外,我们进一步建立了 RQMC 特征的多项平均误差界:部分结果仅需更弱的假设条件,另一些则显著降低了对数因子的指数阶。在核岭回归的框架下,我们证明 RQMC 特征在保持相同统计误差率的同时,相比 MC 特征具有计算优势。实证结果进一步表明,与在高维场景下性能显著下降的 QMC 方法不同,RQMC 方法在低维及中高维设定下均能保持稳定的性能表现。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员