Let $\mathbf{x}_{n \times n}$ be an $n \times n$ matrix of variables and let $\mathbb{F}[\mathbf{x}_{n \times n}]$ be the polynomial ring in these variables over a field $\mathbb{F}$. We study the ideal $I_n \subseteq \mathbb{F}[\mathbf{x}_{n \times n}]$ generated by all row and column variable sums and all products of two variables drawn from the same row or column. We show that the quotient $\mathbb{F}[\mathbf{x}_{n \times n}]/I_n$ admits a standard monomial basis determined by Viennot's shadow line avatar of the Schensted correspondence. As a corollary, the Hilbert series of $\mathbb{F}[\mathbf{x}_{n \times n}]/I_n$ is the generating function of permutations in $\mathfrak{S}_n$ by the length of their longest increasing subsequence. Along the way, we describe a `shadow junta' basis of the vector space of $k$-local permutation statistics. We also calculate the structure of $\mathbb{F}[\mathbf{x}_{n \times n}]/I_n$ as a graded $\mathfrak{S}_n \times \mathfrak{S}_n$-module.


翻译:暂无翻译

0
下载
关闭预览

相关内容

RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员