We present Ver, a data discovery system that identifies project-join views over large repositories of tables that do not contain join path information, and even when input queries are inaccurate. Ver implements a reference architecture to solve both the technical (scale and search) and human (semantic ambiguity, navigating a large number of results) problems of view discovery. We demonstrate users find the view they want when using Ver with a user study and we demonstrate its performance with large-scale end-to-end experiments on real-world datasets containing tens of millions of join paths.


翻译:我们提出了一个“ Ver” 数据发现系统, 用于识别大型表格存储库中不包含联合路径信息的项目和共享观点, 即使输入查询不准确。 Ver 实施一个参考架构, 以解决技术( 规模和搜索) 和人类( 语义模糊, 浏览大量结果) 的视图发现问题。 我们展示用户在用户研究时使用 Ver 时会发现他们想要的视图, 我们通过包含数千万个连接路径的真实世界数据集的大规模端对端实验来展示其性能 。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月2日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员