Teaching robots novel skills with demonstrations via human-in-the-loop data collection techniques like kinesthetic teaching or teleoperation puts a heavy burden on human supervisors. In contrast to this paradigm, it is often significantly easier to provide raw, action-free visual data of tasks being performed. Moreover, this data can even be mined from video datasets or the web. Ideally, this data can serve to guide robot learning for new tasks in novel environments, informing both "what" to do and "how" to do it. A powerful way to encode both the "what" and the "how" is to infer a well-shaped reward function for reinforcement learning. The challenge is determining how to ground visual demonstration inputs into a well-shaped and informative reward function. We propose a technique Rank2Reward for learning behaviors from videos of tasks being performed without access to any low-level states and actions. We do so by leveraging the videos to learn a reward function that measures incremental "progress" through a task by learning how to temporally rank the video frames in a demonstration. By inferring an appropriate ranking, the reward function is able to guide reinforcement learning by indicating when task progress is being made. This ranking function can be integrated into an adversarial imitation learning scheme resulting in an algorithm that can learn behaviors without exploiting the learned reward function. We demonstrate the effectiveness of Rank2Reward at learning behaviors from raw video on a number of tabletop manipulation tasks in both simulations and on a real-world robotic arm. We also demonstrate how Rank2Reward can be easily extended to be applicable to web-scale video datasets.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员