Representation theorems for formal systems often take the form of an inductive translation that satisfies certain invariants, which are proved inductively. Theory morphisms and logical relations are common patterns of such inductive constructions. They allow representing the translation and the proofs of the invariants as a set of translation rules, corresponding to the cases of the inductions. Importantly, establishing the invariants is reduced to checking a finite set of, typically decidable, statements. Therefore, in a framework supporting theory morphisms and logical relations, translations that fit one of these patterns become much easier to formalize and to verify. The $\lambda\Pi$-calculus modulo rewriting is a logical framework designed for representing and translating between formal systems that has previously not systematically supported such patterns. In this paper, we extend it with theory morphisms and logical relations. We apply these to define and verify invariants for a number of translations between formal systems. In doing so, we identify some best practices that enable us to obtain elegant novel formalizations of some challenging translations, in particular type erasure translations from typed to untyped languages.


翻译:形式系统的表示定理通常采用满足特定不变量的归纳翻译形式,这些不变量通过归纳法证明。理论态射与逻辑关系是此类归纳构造的常见模式。它们允许将翻译及不变量的证明表示为一组翻译规则,对应于归纳的各个情形。重要的是,建立不变量被简化为检查一组有限且通常可判定的陈述。因此,在支持理论态射与逻辑关系的框架中,符合这些模式的翻译将变得更容易形式化与验证。$\lambda\Pi$-演算模重写是一种专为形式系统表示与翻译设计的逻辑框架,此前并未系统支持此类模式。本文通过引入理论态射与逻辑关系对该框架进行扩展。我们运用这些工具为多个形式系统间的翻译定义并验证不变量。在此过程中,我们总结出若干最佳实践,从而实现了对某些具有挑战性翻译的优雅新颖形式化,特别是从类型化语言到无类型语言的类型擦除翻译。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员