We consider the problem of detecting whether a power-law inhomogeneous random graph contains a geometric community, and we frame this as an hypothesis testing problem. More precisely, we assume that we are given a sample from an unknown distribution on the space of graphs on n vertices. Under the null hypothesis, the sample originates from the inhomogeneous random graph with a heavy-tailed degree sequence. Under the alternative hypothesis, $k = o(n)$ vertices are given spatial locations and connect between each other following the geometric inhomogeneous random graph connection rule. The remaining $n-k$ vertices follow the inhomogeneous random graph connection rule. We propose a simple and efficient test, which is based on counting normalized triangles, to differentiate between the two hypotheses. We prove that our test correctly detects the presence of the community with high probability as $n \to \infty$, and identifies large-degree vertices of the community with high probability.


翻译:我们考虑了检测电法不相容随机图是否包含几何界的问题, 我们将此设置为假设测试问题。 更确切地说, 我们假设我们从n 脊椎上的图形空间的未知分布中获得了样本。 在无效假设下, 样本来源于不相干随机图, 且具有重度序列。 在替代假设下, $k = o(n) o(n) o(n) o(n) o(n) o( o) o( o) o( o) o( o) o( o) o( o) o( o) o( o( o) o( o) o( o) o( o) o( o) o( o) o( o) ) o( o( o) o( o( o) o( o( o) o( o) o( o) o( o) o( o) o( o) o( o) o( o) o( o) o( o) o( t) ) ) o( ) ) o( o( ) o( t) o( t) ) ) ) ) o( o( o( o( ) ) o( o( o( o( o( o) o) o) ) ) o( o( o( ) ) o( ) o( o( ) ) o( o( ) ) ) ) o( o( o( ) ) ) ) ) ) o( ) o( o( o( o( o( o( o( o( o) o( o( o) ) o( o) o) o) ) o( o( o( o( o) o) o( o) o) </s>

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
54+阅读 · 2021年1月20日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
54+阅读 · 2021年1月20日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员