Heterogeneous functional data are commonly seen in time series and longitudinal data analysis. To capture the statistical structures of such data, we propose the framework of Functional Singular Value Decomposition (FSVD), a unified framework with structure-adaptive interpretability for the analysis of heterogeneous functional data. We establish the mathematical foundation of FSVD by proving its existence and providing its fundamental properties using operator theory. We then develop an implementation approach for noisy and irregularly observed functional data based on a novel joint kernel ridge regression scheme and provide theoretical guarantees for its convergence and estimation accuracy. The framework of FSVD also introduces the concepts of intrinsic basis functions and intrinsic basis vectors, which represent two fundamental statistical structures for random functions and connect FSVD to various tasks including functional principal component analysis, factor models, functional clustering, and functional completion. We compare the performance of FSVD with existing methods in several tasks through extensive simulation studies. To demonstrate the value of FSVD in real-world datasets, we apply it to extract temporal patterns from a COVID-19 case count dataset and perform data completion on an electronic health record dataset.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年11月13日
Arxiv
0+阅读 · 2024年11月9日
Arxiv
0+阅读 · 2024年11月8日
Arxiv
0+阅读 · 2024年11月8日
Arxiv
29+阅读 · 2017年12月6日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年11月13日
Arxiv
0+阅读 · 2024年11月9日
Arxiv
0+阅读 · 2024年11月8日
Arxiv
0+阅读 · 2024年11月8日
Arxiv
29+阅读 · 2017年12月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员