In many MOOCs, whenever a student completes a programming task, they can see previous solutions of other students to find potentially different ways of solving the problem and to learn new coding constructs. However, a lot of MOOCs simply show the most recent solutions, disregarding their diversity or quality, and thus hindering the students' opportunity to learn. In this work, we explore this novel problem for the first time. To solve it, we adapted the existing plagiarism detection tool JPlag to Python submissions on Hyperskill, a popular MOOC platform. However, due to the tool's inner algorithm, JPLag fully processed only 46 out of 867 studied tasks. Therefore, we developed our own tool called Rhubarb. This tool first standardizes solutions that are algorithmically the same, then calculates the structure-aware edit distance between them, and then applies clustering. Finally, it selects one example from each of the largest clusters, thus ensuring their diversity. Rhubarb was able to handle all 867 tasks successfully. We compared different approaches on a set of 59 real-life tasks that both tools could process. Eight experts rated the selected solutions based on diversity, code quality, and usefulness. The default platform approach of simply selecting recent submissions received on average 3.12 out of 5, JPlag - 3.77, Rhubarb - 3.50. To ensure both quality and coverage, we created a system that combines both tools. We conclude our work by discussing the future of this new problem and the research needed to solve it better.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年12月6日
Arxiv
0+阅读 · 2024年12月6日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员