This paper presents a soft robot finger capable of adaptive-twist deformation to grasp objects by wrapping them. For a soft hand to grasp and pick-up one object from densely contained multiple objects, a soft finger requires the adaptive-twist deformation function in both in-plane and out-of-plane directions. The function allows the finger to be inserted deeply into a limited gap among objects. Once inserted, the soft finger requires appropriate control of grasping force normal to contact surface, thereby maintaining the twisted deformation. In this paper, we refer to this type of grasping as grasping by wrapping. To achieve these two functions by a single actuation source, we propose a variable stiffness mechanism that can adaptively change the stiffness as the pressure is higher. We conduct a finite element analysis (FEA) on the proposed mechanism and determine its design parameter based on the FEA result. Using the developed soft finger, we report basic experimental results and demonstrations on grasping various objects.


翻译:本文提出了一种能够通过自适应扭转变形实现包裹抓取物体的软体机器人手指。为使软体手能够在密集堆叠的多个物体中抓取并提起单个物体,软体手指需具备面内与面外方向的自适应扭转变形功能。该功能使手指能够深入物体间的狭窄间隙。插入后,软体手指需对接触面法向的抓取力进行精确控制,从而维持扭转变形状态。本文将此类抓取方式称为包裹式抓取。为实现单一驱动源同时完成这两项功能,我们提出一种可变刚度机构,其刚度可随压力增大而自适应调整。通过对该机构进行有限元分析(FEA),我们依据分析结果确定了设计参数。基于所开发的软体手指,我们报告了抓取多种物体的基础实验结果与演示案例。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2019年3月25日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员