3D deep models consuming point clouds have achieved sound application effects in computer vision. However, recent studies have shown they are vulnerable to 3D adversarial point clouds. In this paper, we regard these malicious point clouds as 3D steganography examples and present a new perspective, 3D steganalysis, to counter such examples. Specifically, we propose 3D-VFD, a victim-free detector against 3D adversarial point clouds. Its core idea is to capture the discrepancies between residual geometric feature distributions of benign point clouds and adversarial point clouds and map these point clouds to a lower dimensional space where we can efficiently distinguish them. Unlike existing detection techniques against 3D adversarial point clouds, 3D-VFD does not rely on the victim 3D deep model's outputs for discrimination. Extensive experiments demonstrate that 3D-VFD achieves state-of-the-art detection and can effectively detect 3D adversarial attacks based on point adding and point perturbation while keeping fast detection speed.


翻译:3D深消费点云模型在计算机视野中取得了健全的应用效果。然而,最近的研究表明,它们很容易受到 3D 对抗点云的影响。在本文中,我们认为这些恶意点云是3D 对抗点云的现有探测技术,我们不依赖受害者3D 深度模型的输出来进行歧视。广泛的实验表明,3D-VFD取得了最先进的检测,并能够有效地探测到基于点加点和点穿透的3D 对抗点云,同时保持快速探测速度。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
专知会员服务
51+阅读 · 2020年12月14日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
38+阅读 · 2020年3月10日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员