In classical cryptography, one-way functions are widely considered to be the minimal computational assumption. However, when taking quantum information into account, the situation is more nuanced. There are currently two major candidates for the minimal assumption: the search quantum generalization of one-way functions are one-way state generators (OWSG), whereas the decisional variant are EFI pairs. A well-known open problem in quantum cryptography is to understand how these two primitives are related. A recent breakthrough result of Khurana and Tomer (STOC'24) shows that OWSGs imply EFI pairs, for the restricted case of pure states. In this work, we make progress towards understanding the general case. To this end, we define the notion of inefficiently-verifiable one-way state generators (IV-OWSGs), where the verification algorithm is not required to be efficient, and show that these are precisely equivalent to EFI pairs, with an exponential loss in the reduction. Significantly, this equivalence holds also for mixed states. Thus our work establishes the following relations among these fundamental primitives of quantum cryptography: (mixed) OWSGs => (mixed) IV-OWSGs $\equiv_{\rm exp}$ EFI pairs, where $\equiv_{\rm exp}$ denotes equivalence up to exponential security of the primitives.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年5月31日
Arxiv
15+阅读 · 2023年4月24日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年5月31日
Arxiv
15+阅读 · 2023年4月24日
Arxiv
38+阅读 · 2020年12月2日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员