Stock prices forecasting has always been a challenging task. Although many research projects try to address the problem, few of them pay attention to the varying degrees of dependencies between stock prices. In this paper, we introduce a hybrid model that improves the prediction of stock prices by emphasizing the dependencies between adjacent stock prices. The proposed model, ResNLS, is mainly composed of two neural architectures, ResNet and LSTM. ResNet serves as a feature extractor to identify dependencies between stock prices, while LSTM analyzes the initial time series data with the combination of dependencies, which are considered as residuals. Our experiment reveals that when the closing price data for the previous 5 consecutive trading days is used as input, the performance of the model (ResNLS-5) is optimal compared to those with other inputs. Furthermore, ResNLS-5 demonstrates at least a 20% improvement over current state-of-the-art baselines. To verify whether ResNLS-5 can help clients effectively avoid risks and earn profits in the stock market, we construct a quantitative trading framework for back testing. The result shows that the trading strategy based on ResNLS-5 predictions can successfully mitigate losses during declining stock prices and generate profits in periods of rising stock prices. The relevant code is publicly available on GitHub.


翻译:股票价格预测始终是一项具有挑战性的任务。尽管许多研究项目试图解决该问题,但鲜有研究关注股票价格之间不同程度的依赖关系。本文提出一种混合模型,通过强调相邻股票价格之间的依赖关系来改进股票价格预测。所提出的模型ResNLS主要由ResNet和LSTM两种神经架构组成。ResNet作为特征提取器来识别股票价格之间的依赖关系,而LSTM则结合这些被视为残差的依赖关系来分析初始时间序列数据。我们的实验表明,当使用前5个连续交易日的收盘价数据作为输入时,模型(ResNLS-5)的性能相较于其他输入设置达到最优。此外,ResNLS-5相比当前最先进的基线模型至少实现了20%的性能提升。为验证ResNLS-5能否帮助客户在股票市场中有效规避风险并获取收益,我们构建了一个量化交易框架进行回测。结果表明,基于ResNLS-5预测的交易策略能够成功减轻股价下跌期间的损失,并在股价上涨时期产生收益。相关代码已在GitHub上公开。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员