CodeSight is an end-to-end system designed to anticipate deadline compliance in software development workflows. It captures development and deployment data directly from GitHub, transforming it into process mining logs for detailed analysis. From these logs, the system generates metrics and dashboards that provide actionable insights into PR activity patterns and workflow efficiency. Building on this structured representation, CodeSight employs an LSTM model that predicts remaining PR resolution times based on sequential activity traces and static features, enabling early identification of potential deadline breaches. In tests, the system demonstrates high precision and F1 scores in predicting deadline compliance, illustrating the value of integrating process mining with machine learning for proactive software project management.


翻译:CodeSight 是一个端到端系统,旨在预测软件开发工作流中的截止日期合规性。它直接从 GitHub 捕获开发和部署数据,并将其转换为过程挖掘日志以进行详细分析。基于这些日志,系统生成指标和仪表板,提供关于 PR 活动模式和工作流效率的可操作洞察。在此结构化表示的基础上,CodeSight 采用 LSTM 模型,根据顺序活动轨迹和静态特征预测剩余的 PR 解决时间,从而能够早期识别潜在的截止日期违规。在测试中,该系统在预测截止日期合规性方面表现出高精度和高 F1 分数,展示了将过程挖掘与机器学习相结合以进行主动软件项目管理的价值。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员