Recent research has found that the activation function (AF) selected for adding non-linearity into the output can have a big impact on how effectively deep learning networks perform. Developing activation functions that can adapt simultaneously with learning is a need of time. Researchers recently started developing activation functions that can be trained throughout the learning process, known as trainable, or adaptive activation functions (AAF). Research on AAF that enhance the outcomes is still in its early stages. In this paper, a novel activation function 'ErfReLU' has been developed based on the erf function and ReLU. This function exploits the ReLU and the error function (erf) to its advantage. State of art activation functions like Sigmoid, ReLU, Tanh, and their properties have been briefly explained. Adaptive activation functions like Tanhsoft1, Tanhsoft2, Tanhsoft3, TanhLU, SAAF, ErfAct, Pserf, Smish, and Serf have also been described. Lastly, performance analysis of 9 trainable activation functions along with the proposed one namely Tanhsoft1, Tanhsoft2, Tanhsoft3, TanhLU, SAAF, ErfAct, Pserf, Smish, and Serf has been shown by applying these activation functions in MobileNet, VGG16, and ResNet models on CIFAR-10, MNIST, and FMNIST benchmark datasets.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2021年7月20日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员