Bandits serve as the theoretical foundation of sequential learning and an algorithmic foundation of modern recommender systems. However, recommender systems often rely on user-sensitive data, making privacy a critical concern. This paper contributes to the understanding of Differential Privacy (DP) in bandits with a trusted centralised decision-maker, and especially the implications of ensuring zero Concentrated Differential Privacy (zCDP). First, we formalise and compare different adaptations of DP to bandits, depending on the considered input and the interaction protocol. Then, we propose three private algorithms, namely AdaC-UCB, AdaC-GOPE and AdaC-OFUL, for three bandit settings, namely finite-armed bandits, linear bandits, and linear contextual bandits. The three algorithms share a generic algorithmic blueprint, i.e. the Gaussian mechanism and adaptive episodes, to ensure a good privacy-utility trade-off. We analyse and upper bound the regret of these three algorithms. Our analysis shows that in all of these settings, the prices of imposing zCDP are (asymptotically) negligible in comparison with the regrets incurred oblivious to privacy. Next, we complement our regret upper bounds with the first minimax lower bounds on the regret of bandits with zCDP. To prove the lower bounds, we elaborate a new proof technique based on couplings and optimal transport. We conclude by experimentally validating our theoretical results for the three different settings of bandits.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员