Curved Boolean Logic (CBL) generalizes propositional logic by allowing local truth assignments that do not extend to a single global valuation, analogous to curvature in geometry. We give equivalent sheaf and exclusivity-graph semantics and a context-aware proof calculus that is conservative in the flat limit. We formalize CBL-SAT and basic complexity (NP-complete in general) and present operational operators (CBL-AC and CBL-CONS) that prune contradictions earlier on classical hardware. We model noise with iid, AR(1)-correlated, and adversarial bounded perturbations and provide permutation-based significance with Benjamini-Hochberg FDR control. A Colab-ready notebook (ancillary files) regenerates all figures and statistics. We position CBL relative to KCBS, CSW, and sheaf frameworks and outline links to SAT/CSP and robustness/adapter stability in large language models.


翻译:弯曲布尔逻辑(CBL)通过允许局部真值赋值不扩展至单一全局赋值来推广命题逻辑,类似于几何中的曲率概念。我们给出了等价的层与互斥图语义,以及一个在平坦极限下保持保守的情境感知证明演算。我们形式化了CBL-SAT问题及其基本复杂度(通常为NP完全),并提出了可在经典硬件上提前修剪矛盾的操作算子(CBL-AC与CBL-CONS)。我们通过独立同分布、AR(1)相关及对抗性有界扰动对噪声进行建模,并提供基于置换的显著性检验及Benjamini-Hochberg错误发现率控制。一个可直接在Colab运行的笔记本(辅助文件)可复现所有图表与统计结果。我们将CBL与KCBS、CSW及层理论框架进行对比定位,并概述其与SAT/CSP问题及大语言模型中鲁棒性/适配器稳定性的关联。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员