Recent works have demonstrated the effectiveness of reinforcement learning (RL)-based post-training for enhancing the reasoning capabilities of large language models (LLMs). In particular, Group Relative Policy Optimization (GRPO) has shown impressive success using a PPO-style reinforcement algorithm with group-normalized rewards. However, the effectiveness of GRPO in Video Large Language Models (VideoLLMs) has still been less studyed. In this paper, we explore GRPO and identify two problems that deteriorate the effective learning: (1) reliance on safeguards, and (2) vanishing advantage. To mitigate these challenges, we propose DeepVideo-R1, a video large language model trained with Reg-GRPO (Regressive GRPO) and difficulty-aware data augmentation. Reg-GRPO reformulates the GRPO loss function into a regression task that directly predicts the advantage in GRPO, eliminating the need for safeguards such as the clipping and min functions. It directly aligns the model with advantages, providing guidance to prefer better ones. The difficulty-aware data augmentation strategy augments input prompts/videos to locate the difficulty of samples at solvable difficulty levels, enabling diverse reward signals. Our experimental results show that our approach significantly improves video reasoning performance across multiple benchmarks.


翻译:近期研究表明,基于强化学习(RL)的后训练方法能有效提升大语言模型(LLMs)的推理能力。其中,组相对策略优化(GRPO)采用PPO风格的强化算法与组归一化奖励机制,已展现出显著成效。然而,GRPO在视频大语言模型(VideoLLMs)中的有效性仍缺乏深入研究。本文探讨了GRPO在视频领域的应用,并发现两个削弱有效学习的问题:(1)对安全机制的依赖,以及(2)优势函数消失。为应对这些挑战,我们提出了DeepVideo-R1——一个通过回归GRPO(Regressive GRPO)与难度感知数据增强训练的视频大语言模型。Reg-GRPO将GRPO损失函数重构为直接预测GRPO中优势值的回归任务,从而无需依赖裁剪函数与最小值函数等安全机制。该方法直接使模型与优势函数对齐,引导模型偏好更优解。难度感知数据增强策略通过对输入提示/视频进行增强,将样本难度定位在可求解的难度区间,从而产生多样化的奖励信号。实验结果表明,我们的方法在多个基准测试中显著提升了视频推理性能。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员