We study the average-case version of the Orthogonal Vectors problem, in which one is given as input $n$ vectors from $\{0,1\}^d$ which are chosen randomly so that each coordinate is $1$ independently with probability $p$. Kane and Williams [ITCS 2019] showed how to solve this problem in time $O(n^{2 - \delta_p})$ for a constant $\delta_p > 0$ that depends only on $p$. However, it was previously unclear how to solve the problem faster in the hardest parameter regime where $p$ may depend on $d$. The best prior algorithm was the best worst-case algorithm by Abboud, Williams and Yu [SODA 2014], which in dimension $d = c \cdot \log n$, solves the problem in time $n^{2 - \Omega(1/\log c)}$. In this paper, we give a new algorithm which improves this to $n^{2 - \Omega(\log\log c /\log c)}$ in the average case for any parameter $p$. As in the prior work, our algorithm uses the polynomial method. We make use of a very simple polynomial over the reals, and use a new method to analyze its performance based on computing how its value degrades as the input vectors get farther from orthogonal. To demonstrate the generality of our approach, we also solve the average-case version of the closest pair problem in the same running time.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年12月11日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员