A simultaneous enhancement of accuracy and diversity of predictions remains a challenge in ambiguous medical image segmentation (AMIS) due to the inherent trade-offs. While truncated diffusion probabilistic models (TDPMs) hold strong potential with a paradigm optimization, existing TDPMs suffer from entangled accuracy and diversity of predictions with insufficient fidelity and plausibility. To address the aforementioned challenges, we propose Ambiguity-aware Truncated Flow Matching (ATFM), which introduces a novel inference paradigm and dedicated model components. Firstly, we propose Data-Hierarchical Inference, a redefinition of AMIS-specific inference paradigm, which enhances accuracy and diversity at data-distribution and data-sample level, respectively, for an effective disentanglement. Secondly, Gaussian Truncation Representation (GTR) is introduced to enhance both fidelity of predictions and reliability of truncation distribution, by explicitly modeling it as a Gaussian distribution at $T_{\text{trunc}}$ instead of using sampling-based approximations.Thirdly, Segmentation Flow Matching (SFM) is proposed to enhance the plausibility of diverse predictions by extending semantic-aware flow transformation in Flow Matching (FM). Comprehensive evaluations on LIDC and ISIC3 datasets demonstrate that ATFM outperforms SOTA methods and simultaneously achieves a more efficient inference. ATFM improves GED and HM-IoU by up to $12\%$ and $7.3\%$ compared to advanced methods.
翻译:在模糊医学图像分割(AMIS)中,由于固有的权衡关系,同时提升预测的准确性与多样性仍是一项挑战。尽管截断扩散概率模型(TDPMs)通过范式优化展现出强大潜力,但现有TDPMs存在预测准确性与多样性相互纠缠的问题,且保真度与合理性不足。为应对上述挑战,本文提出模糊感知截断流匹配(ATFM),引入了一种新颖的推理范式及专用模型组件。首先,我们提出数据分层推理,这是一种针对AMIS特定推理范式的重新定义,分别在数据分布层面和数据样本层面增强准确性与多样性,从而实现有效的解耦。其次,引入高斯截断表示(GTR),通过在$T_{\text{trunc}}$处将其显式建模为高斯分布而非基于采样的近似,以提升预测的保真度与截断分布的可靠性。第三,提出分割流匹配(SFM),通过扩展流匹配(FM)中的语义感知流变换,以增强多样化预测的合理性。在LIDC和ISIC3数据集上的综合评估表明,ATFM优于现有最先进方法,并同时实现了更高效的推理。与先进方法相比,ATFM将GED和HM-IoU分别提升了最高$12\\%$和$7.3\\%。