We consider fair division of a set of indivisible goods among $n$ agents with additive valuations using the desirable fairness notion of maximin share (MMS). MMS is the most popular share-based notion, in which an agent finds an allocation fair to her if she receives goods worth at least her MMS value. An allocation is called MMS if all agents receive their MMS values. However, since MMS allocations do not always exist, the focus shifted to investigating its ordinal and multiplicative approximations. In the ordinal approximation, the goal is to show the existence of $1$-out-of-$d$ MMS allocations (for the smallest possible $d>n$). A series of works led to the state-of-the-art factor of $d=\lfloor 3n/2 \rfloor$ [HSSH21]. We show that $1$-out-of-$\lceil 4n/3\rceil$ MMS allocations always exist. In the multiplicative approximation, the goal is to show the existence of $\alpha$-MMS allocations (for the largest possible $\alpha < 1$) which guarantees each agent at least $\alpha$ times her MMS value. A series of works in the last decade led to the state-of-the-art factor of $\alpha = \frac{3}{4} + \frac{3}{3836}$ [AG23]. We introduce a general framework of $(\alpha, \beta, \gamma)$-MMS that guarantees $\alpha$ fraction of agents $\beta$ times their MMS values and the remaining $(1-\alpha)$ fraction of agents $\gamma$ times their MMS values. The $(\alpha, \beta, \gamma)$-MMS captures both ordinal and multiplicative approximations as its special cases. We show that $(2(1 -\beta)/\beta, \beta, 3/4)$-MMS allocations always exist. Furthermore, since we can choose the $2(1-\beta)/\beta$ fraction of agents arbitrarily in our algorithm, this implies (using $\beta=\sqrt{3}/2$) the existence of a randomized allocation that gives each agent at least 3/4 times her MMS value (ex-post) and at least $(17\sqrt{3} - 24)/4\sqrt{3} > 0.785$ times her MMS value in expectation (ex-ante).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月12日
Arxiv
31+阅读 · 2021年6月30日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年9月12日
Arxiv
31+阅读 · 2021年6月30日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
17+阅读 · 2019年3月28日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员