In a plethora of recent work, large language models (LLMs) demonstrated impressive reasoning ability, but many proposed downstream reasoning tasks focus on performance-wise evaluation. Two fundamental questions persist: 1) how reliable is the quality of reasoning, and 2) can models detect unreliable reasoning? In this paper, we investigate self-contradictory (Self-Contra) reasoning, where the model reasoning does not support predictions. To address 1), we assess the Self-Contra rate across four datasets and delve into finer-grained categories of Self-Contra reasoning. We find that LLMs often contradict themselves when performing reasoning tasks that involve contextual information understanding or commonsense. Importantly, a higher accuracy does not necessarily correspond to a lower Self-Contra rate. The model may appear to generate correct answers but it may take shortcuts in reasoning or skip over contextual evidence, thereby displaying Self-Contra behaviors with compromised reasoning. As for 2), we task GPT-4 with identifying Self-Contra reasoning and finer-grained fallacies. We observe that GPT-4 struggles to effectively detect Self-Contra reasoning, with significantly low performance compared with human judgment. Our results indicate that the current LLMs lack robustness necessary for reliable reasoning and we emphasize the urgent need for establishing best practices in comprehensive reasoning evaluations beyond accuracy-based metrics.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2022年3月28日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员