We consider the dunking problem: a solid body at uniform temperature $T_{\text i}$ is placed in a environment characterized by farfield temperature $T_\infty$ and spatially uniform time-independent heat transfer coefficient. We permit heterogeneous material composition: spatially dependent density, specific heat, and thermal conductivity. Mathematically, the problem is described by a heat equation with Robin boundary conditions. The crucial parameter is the Biot number -- a nondimensional heat transfer (Robin) coefficient; we consider the limit of small Biot number. We introduce first-order and second-order asymptotic approximations (in Biot number) for several quantities of interest, notably the spatial domain average temperature as a function of time; the first-order approximation is simply the standard engineering `lumped' model. We then provide asymptotic error estimates for the first-order and second-order approximations for small Biot number, and also, for the first-order approximation, alternative strict bounds valid for all Biot number. Companion numerical solutions of the heat equation confirm the effectiveness of the error estimates for small Biot number. The second-order approximation and the first-order and second-order error estimates depend on several functional outputs associated to an elliptic partial differential equation; the latter is derived from Biot-sensitivity analysis of the heat equation eigenproblem in the limit of small Biot number. Most important is $\phi$, the only functional output required for the first-order error estimates; $\phi$ admits a simple physical interpretation in terms of conduction length scale. We investigate the domain and property dependence of $\phi$: most notably, we characterize spatial domains for which the standard lumped-model error criterion -- Biot number (based on volume-to-area length scale) small -- is deficient.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员