Let $\{P_{\theta}:\theta \in {\mathbb R}^d\}$ be a log-concave location family with $P_{\theta}(dx)=e^{-V(x-\theta)}dx,$ where $V:{\mathbb R}^d\mapsto {\mathbb R}$ is a known convex function and let $X_1,\dots, X_n$ be i.i.d. r.v. sampled from distribution $P_{\theta}$ with an unknown location parameter $\theta.$ The goal is to estimate the value $f(\theta)$ of a smooth functional $f:{\mathbb R}^d\mapsto {\mathbb R}$ based on observations $X_1,\dots, X_n.$ In the case when $V$ is sufficiently smooth and $f$ is a functional from a ball in a H\"older space $C^s,$ we develop estimators of $f(\theta)$ with minimax optimal error rates measured by the $L_2({\mathbb P}_{\theta})$-distance as well as by more general Orlicz norm distances. Moreover, we show that if $d\leq n^{\alpha}$ and $s>\frac{1}{1-\alpha},$ then the resulting estimators are asymptotically efficient in H\'ajek-LeCam sense with the convergence rate $\sqrt{n}.$ This generalizes earlier results on estimation of smooth functionals in Gaussian shift models. The estimators have the form $f_k(\hat \theta),$ where $\hat \theta$ is the maximum likelihood estimator and $f_k: {\mathbb R}^d\mapsto {\mathbb R}$ (with $k$ depending on $s$) are functionals defined in terms of $f$ and designed to provide a higher order bias reduction in functional estimation problem. The method of bias reduction is based on iterative parametric bootstrap and it has been successfully used before in the case of Gaussian models.


翻译:Let $\\ p@ p@ testa} :\\\ a\ a\ a\ a\ a\ a\ a\ a\ a\ a\\\\ mbR} $,讓 $X_ 1,\ dots, X_n美元是 i.d. d. r.v. 樣式從發送 $P _theta} 中抽取的美元,一個未知的位置參數 $Ta} (dx) = = =x- V(x- theta) dx, 美元 =dxxx, 美元, 美元====================================xxxxxxx: ======xxxxxxx, ========xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
已删除
将门创投
8+阅读 · 2018年10月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员