Electronic Health Records (EHRs) enable deep learning for clinical predictions, but the optimal method for representing patient data remains unclear due to inconsistent evaluation practices. We present the first systematic benchmark to compare EHR representation methods, including multivariate time-series, event streams, and textual event streams for LLMs. This benchmark standardises data curation and evaluation across two distinct clinical settings: the MIMIC-IV dataset for ICU tasks (mortality, phenotyping) and the EHRSHOT dataset for longitudinal care (30-day readmission, 1-year pancreatic cancer). For each paradigm, we evaluate appropriate modelling families--including Transformers, MLP, LSTMs and Retain for time-series, CLMBR and count-based models for event streams, 8-20B LLMs for textual streams--and analyse the impact of feature pruning based on data missingness. Our experiments reveal that event stream models consistently deliver the strongest performance. Pre-trained models like CLMBR are highly sample-efficient in few-shot settings, though simpler count-based models can be competitive given sufficient data. Furthermore, we find that feature selection strategies must be adapted to the clinical setting: pruning sparse features improves ICU predictions, while retaining them is critical for longitudinal tasks. Our results, enabled by a unified and reproducible pipeline, provide practical guidance for selecting EHR representations based on the clinical context and data regime.


翻译:电子健康记录(EHRs)为临床预测的深度学习提供了可能,但由于评估实践的不一致性,患者数据的最佳表示方法仍不明确。我们提出了首个系统性基准,用于比较EHR表示方法,包括用于LLMs的多变量时间序列、事件流和文本事件流。该基准在两个不同的临床场景中标准化了数据整理和评估流程:用于ICU任务(死亡率、表型分类)的MIMIC-IV数据集和用于纵向护理(30天再入院、1年胰腺癌)的EHRSHOT数据集。针对每种范式,我们评估了相应的建模家族——包括用于时间序列的Transformers、MLP、LSTMs和Retain,用于事件流的CLMBR和基于计数的模型,以及用于文本流的8-20B LLMs——并分析了基于数据缺失性的特征剪枝的影响。我们的实验表明,事件流模型始终提供最强的性能。像CLMBR这样的预训练模型在少样本设置中具有很高的样本效率,尽管在数据充足的情况下,更简单的基于计数的模型也可能具有竞争力。此外,我们发现特征选择策略必须适应临床场景:剪枝稀疏特征可改善ICU预测,而保留这些特征对于纵向任务至关重要。我们的结果通过一个统一且可复现的流程实现,为基于临床背景和数据状况选择EHR表示提供了实用指导。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2022年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员