We consider the problem of fair division, where a set of indivisible goods should be distributed fairly among a set of agents with combinatorial valuations. To capture fairness, we adopt the notion of shares, where each agent is entitled to a fair share, based on some fairness criterion, and an allocation is considered fair if the value of every agent (weakly) exceeds her fair share. A share-based notion is considered universally feasible if it admits a fair allocation for every profile of monotone valuations. A major question arises: is there a non-trivial share-based notion that is universally feasible? The most well-known share-based notions, namely proportionality and maximin share, are not universally feasible, nor are any constant approximations of them. We propose a novel share notion, where an agent assesses the fairness of a bundle by comparing it to her valuation in a random allocation. In this framework, a bundle is considered $q$-quantile fair, for $q\in[0,1]$, if it is at least as good as a bundle obtained in a uniformly random allocation with probability at least $q$. Our main question is whether there exists a constant value of $q$ for which the $q$-quantile share is universally feasible. Our main result establishes a strong connection between the feasibility of quantile shares and the classical Erd\H{o}s Matching Conjecture. Specifically, we show that if a version of this conjecture is true, then the $\frac{1}{2e}$-quantile share is universally feasible. Furthermore, we provide unconditional feasibility results for additive, unit-demand and matroid-rank valuations for constant values of $q$. Finally, we discuss the implications of our results for other share notions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月24日
Arxiv
0+阅读 · 2024年1月23日
Arxiv
0+阅读 · 2024年1月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年1月24日
Arxiv
0+阅读 · 2024年1月23日
Arxiv
0+阅读 · 2024年1月22日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员