In the learning of systems of interacting particles or agents, coercivity condition ensures identifiability of the interaction functions, providing the foundation of learning by nonparametric regression. The coercivity condition is equivalent to the strictly positive definiteness of an integral kernel arising in the learning. We show that for a class of interaction functions such that the system is ergodic, the integral kernel is strictly positive definite, and hence the coercivity condition holds true.


翻译:在学习互动粒子或物剂系统的过程中,共振状态确保互动功能的可识别性,通过非参数回归提供学习的基础。共振状态相当于学习过程中产生的整体内核的绝对肯定性。我们表明,对于一类互动功能,如系统是异性,整体内核是绝对肯定的,因此共振状态是真实的。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
41+阅读 · 2020年9月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月26日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月26日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员