In a context of constant increase in competition and heightened regulatory pressure, accuracy, actuarial precision, as well as transparency and understanding of the tariff, are key issues in non-life insurance. Traditionally used generalized linear models (GLM) result in a multiplicative tariff that favors interpretability. With the rapid development of machine learning and deep learning techniques, actuaries and the rest of the insurance industry have adopted these techniques widely. However, there is a need to associate them with interpretability techniques. In this paper, our study focuses on introducing an Explainable Boosting Machine (EBM) model that combines intrinsically interpretable characteristics and high prediction performance. This approach is described as a glass-box model and relies on the use of a Generalized Additive Model (GAM) and a cyclic gradient boosting algorithm. It accounts for univariate and pairwise interaction effects between features and provides naturally explanations on them. We implement this approach on car insurance frequency and severity data and extensively compare the performance of this approach with classical competitors: a GLM, a GAM, a CART model and an Extreme Gradient Boosting (XGB) algorithm. Finally, we examine the interpretability of these models to capture the main determinants of claim costs.


翻译:在竞争持续加剧、监管压力不断增强的背景下,非寿险领域对精算准确性、费率厘定的精确性以及费率表的透明度与可理解性提出了更高要求。传统使用的广义线性模型(GLM)通过乘法结构构建费率表,其优势在于良好的可解释性。随着机器学习和深度学习技术的快速发展,精算师及保险业其他从业者已广泛采用这些技术。然而,如何将这些技术与可解释性方法相结合成为亟待解决的问题。本文研究重点在于引入一种兼具内在可解释特性与高预测性能的可解释增强机(EBM)模型。该方法被描述为一种"玻璃盒"模型,其基础是广义可加模型(GAM)与循环梯度增强算法的结合。该模型能够处理特征间的单变量效应及双变量交互效应,并提供自然的解释机制。我们将此方法应用于汽车保险索赔频率与严重性数据,并系统比较了该方法与经典模型的性能表现:包括GLM、GAM、CART模型以及极限梯度增强(XGB)算法。最后,我们通过考察这些模型的可解释性来捕捉影响索赔成本的主要决定因素。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey on Data Augmentation for Text Classification
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员