Electronic dictionaries have largely replaced paper dictionaries and become central tools for L2 learners seeking to expand their vocabulary. Users often assume these resources are reliable and rarely question the validity of the definitions provided. The accuracy of major E-dictionaries is seldom scrutinized, and little attention has been paid to how their corpora are constructed. Research on dictionary use, particularly the limitations of electronic dictionaries, remains scarce. This study adopts a combined method of experimentation, user survey, and dictionary critique to examine Youdao, one of the most widely used E-dictionaries in China. The experiment involved a translation task paired with retrospective reflection. Participants were asked to translate sentences containing words that are insufficiently or inaccurately defined in Youdao. Their consultation behavior was recorded to analyze how faulty definitions influenced comprehension. Results show that incomplete or misleading definitions can cause serious misunderstandings. Additionally, students exhibited problematic consultation habits. The study further explores how such flawed definitions originate, highlighting issues in data processing and the integration of AI and machine learning technologies in dictionary construction. The findings suggest a need for better training in dictionary literacy for users, as well as improvements in the underlying AI models used to build E-dictionaries.


翻译:电子词典已基本取代纸质词典,成为第二语言学习者扩充词汇的核心工具。用户通常认为这些资源可靠,极少质疑所提供释义的有效性。主流电子词典的准确性很少受到严格审查,其语料库的构建方式也鲜有关注。关于词典使用的研究,特别是电子词典的局限性,仍然十分匮乏。本研究采用实验、用户调查与词典评析相结合的方法,考察中国使用最广泛的电子词典之一——有道词典。实验包含一项翻译任务及回溯性反思。参与者被要求翻译包含有道词典中释义不充分或不准确的词汇的句子。通过记录其查询行为,分析了错误释义如何影响理解。结果表明,不完整或误导性释义会导致严重的误解。此外,学生表现出有问题的查询习惯。研究进一步探讨了此类缺陷释义的成因,突出了数据处理以及人工智能与机器学习技术在词典构建中的应用所存在的问题。研究结果提示,需要对用户进行更好的词典素养培训,并改进用于构建电子词典的底层人工智能模型。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员